Postdoc in Computational Biology / Systems Biology
Employer: UCLA
Date Posted: 01/07/2015
Application Deadline: Open Until Filled
Job Description
We are seeking a motivated postdoctoral candidate with strong computational and analytical skills and an interest in applying computational and systems biology approaches to understand the pathogenesis of complex human metabolic disorders. Our research involves the integration of genetics, gene expression, epigenomics, phenotypic data to identify causal molecular alterations and the subsequently perturbed molecular networks that contribute to the development of obesity, diabetes, and cardiovascular diseases. The successful candidate will need a strong computational and statistical background with demonstrated track record of method development in computational biology and bioinformatics. He/she will develop novel approaches to integrate diverse genomic, epigenomic, and phenotypic data generated from population-based studies in human and model organisms, and intersect with wet lab biologists to dissect the complex biology of metabolic diseases.
Desired skills and experience
-- Ph.D. or equivalent in computational biology, bioinformatics, systems biology, statistical genetics, computer science, electrical engineering, or other relevant areas
-- Strong computational programming and statistical analysis skills
-- Strong publication record
-- Self-motivated and independent
-- Proficiency with R/Bioconductor, Linux, object-oriented programming, and relational databases (MySQL, Microsoft SQL, etc) preferred.
-- Experience in network biology and data integration preferred
-- Experience with analysis of high throughput datasets such as next-generation sequencing, gene expression arrays, genotyping, and DNA methylation data preferred
About the employer
-- UCLA is consistently placed among the top universities in the world for academics, research and community impact by the most prominent rankings organizations
-- The NIH-, AHA-, and industry-funded lab is in the Department of Integrative Biology and Physiology at UCLA, Los Angeles, California, USA
-- Unique interdisciplinary setting with combination of computational and experimental laboratories, which allows close interactions between computational scientists and bench biologists and facilitates broadening of research scope and skill sets
-- Collaborative research involving national and international collaborators and consortia to deliver high impact studies with broad and significant impact
-- Tailored training to enable achievement of individual career development goals
Contact:
UCLA
Los Angeles, CA
United States
Email: xyang123@ucla.edu
Employer's Web Site: Visit employer's website
博士后在計算生物學(xué)/系統(tǒng)生物學(xué)
雇主:UCLA
發(fā)布日期:2015年1月7日
報名截止日期:不限滿為止
職位描述
我們正在尋求一個積極的博士后候選人具有較強的計算和分析能力,并有興趣在應(yīng)用計算和系統(tǒng)生物學(xué)方法來理解復(fù)雜的人類代謝紊亂的發(fā)病機制。我們的研究涉及遺傳學(xué),基因表達,表觀基因組的整合,表型數(shù)據(jù),以確定因果分子改變并有助于肥胖癥,糖尿病和心血管疾病的發(fā)展隨后擾動分子網(wǎng)絡(luò)。成功的候選人將需要一個強大的計算和統(tǒng)計的背景與方法開發(fā)的計算生物學(xué)和生物信息學(xué)證明的跟蹤記錄。他/她將制定新的方法來整合從人口為基礎(chǔ)的研究,在人類和模式生物產(chǎn)生不同的基因組,表觀基因和表型數(shù)據(jù),并用濕實驗室生物學(xué)家相交剖析代謝性疾病的復(fù)雜生物。
所需的技能和經(jīng)驗
- 博士或者在計算生物學(xué),生物信息學(xué),系統(tǒng)生物學(xué),統(tǒng)計遺傳學(xué),計算機科學(xué),電子工程,或其他相關(guān)領(lǐng)域相當于
- 強大的計算編程和統(tǒng)計分析的技巧
- 強大的出版記錄
- 自我激勵和獨立
- 熟練使用R / Bioconductor的,Linux的,面向?qū)ο缶幊毯完P(guān)系型數(shù)據(jù)庫(MySQL和SQL微軟等)的首選。
- 網(wǎng)絡(luò)生物學(xué)和數(shù)據(jù)集成經(jīng)驗者優(yōu)先
- 具有高吞吐量的數(shù)據(jù)集,如新一代測序,基因表達陣列,基因分型和DNA甲基化首選數(shù)據(jù)分析經(jīng)驗
關(guān)于用人單位
- 加州大學(xué)洛杉磯分校的一貫放在頂尖大學(xué)之一,在世界學(xué)術(shù)界,科研和社會影響的最突出的企業(yè)排名
- 該NIH-,AHA-和行業(yè)資助的實驗室在綜合生物學(xué)系生理加州大學(xué)洛杉磯分校,洛杉磯,加利福尼亞州,美國
- 與組合的計算和實驗的實驗室,這使得計算的科學(xué)家和生物學(xué)家替補之間密切互動獨特的跨學(xué)科的設(shè)置方便了研究范圍和技能擴大
- 合作研究,涉及國家和國際合作者和財團提供具有廣泛而顯著影響的高影響研究
- 量身定制的培訓(xùn),使實現(xiàn)個人職業(yè)發(fā)展目標
聯(lián)系方式:
加州大學(xué)洛杉磯分校
洛杉磯,加利福尼亞
美國
電子郵件:xyang123@ucla.edu
為防止簡歷投遞丟失請抄送一份至:boshijob@126.com(郵件標題格式:應(yīng)聘職位名稱+姓名+學(xué)歷+專業(yè)+中國博士人才網(wǎng))
中國-博士人才網(wǎng)發(fā)布
聲明提示:凡本網(wǎng)注明“來源:XXX”的文/圖等稿件,本網(wǎng)轉(zhuǎn)載出于傳遞更多信息及方便產(chǎn)業(yè)探討之目的,并不意味著本站贊同其觀點或證實其內(nèi)容的真實性,文章內(nèi)容僅供參考。